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TECHNICAL REPORT NUMBER 31 (REVISED)

A GENERALIZATION OF THE WEIBULL DISTRIBUTION
by

A. Clifford Cohen

The University of Georgia

SUMMARY

The two-parameter Weibull distribution with origin at zero and
the three-parameter version of this distribution with origin at Y are
widely employed as statistical models in connection with life testing.
In this paper a four-parameter generalization of this distribution is
introduced in order to provide a more versatile model for use in life
studies and in related investigations.

The problem of parameter estimation is considered and three separate
sets of estimators are presented. These are, i) moment estimators,
ii) maximum 1likelihood estimators and iii) alternate estimators

based on the first three moments and the first order statistic.

iii



A GENERALIZATION OF THE WEIBULL DISTRIBUTION
by
A. Clifford Cohen
The University of Georgia

1. INTRODUCTION

It is well known that the three-parameter gamma distribution
(i.e. the Pearson Type III distribution) may be obtained from the
one-parameter gamma distribution by making the transformation

z = (x - v)/B , where the density of the single parameter gamma distribu-

tion is written as

f(z;0) =J (1

\\\g, elsewhere .

Numerous writers have studied the gamma distribution in its

various forms. Karl Pearson of course studied it extensively and
his name is firmly attached to the Type III version of this distribu-
tion. A development of the Type III distribution together with tables

of areas was presented in NASA CR-61266 by the writer in collaboration



with Helm and Sugg [3]. Harter [7,8] and Harter and Moore [6] have
recently given considerable attention to the gamma distribution and

to its various special cases as well as to certain generalizationms.

2. THE FOUR-PARAMETER DISTRIBUTION

A four parameter generalized Weibull distribution may be

obtained from (1) by making the transformation

z=x-nYe . 2)

The Pearson Type III distribution may then be considered as a special
case of the 4-parameter Weibull distribution in which § = 1. Using

the transformation (2), it follows that

s-1
gx) = £(2) 18] - £y

and subsequently , we have

8
(s x-S Ye s x>y

r(a + 1) 8**1

g(x;a,B,y,8) = \ (3)

0, elsewhere,




If we translate the origin in (3) to the point x = v; i.e. if

we make the transformation

w

X - Y) (4)
the density function (3) becomes

~ 5 . (a+1)—1e—w6/8
r(a + 1) g**!

: w>0,

h(w;a,B8,8) =<' (5)

0, elsewhere .

-

The kth moment of w about the origin may then be written as

o

) . 8.
. _ I
Mriw T 6 J whd et =d oW /8 gy, (6)
°

I(e + 1) g%t

On integrating (6), we obtain

: /8
M.y = — T[(k/8) + e+ 1] . (7)
’ T(e + 1)

The mean, variance, and the third and fourth standard moments

follow as



wo= 878t/ sa v 1] /T,
2 28 | 2

o, = B {(F(o+1)T[(2/8) + o + 1] -T°[(1/8) + a + 1]}
@ + 1)

O3y = B(0,8) / 872 (a8,

o, = Ca,8) / A%(a,8)

where ,

A(a,8) = T (a+1)T[(2/8) + o + 1] ~T2[(1/8) + a + 1] »

B(x,8) = I2(a+1)T[(3/8) + o + 1]

~3r (a+1) T[ (2/6)

+

o+ 1]JT[(1/8) + o + 1] ,

s2r3[(1/8) + a + 1] ,

\

b

(9)




C(a,8) = I (a+1)T[(4/8) + & + 1]

4r (s 1) T[(3/8) + a + 1]T[(1/6) + a + 1]
9)

2
+6T (a+1)T[(2/68) + o + 1]T[(1/8) + o + 1] (continued)

S3M1/8) + a + 1]

The square of the coefficient of variation may be written as

I rn 1 en N - . 171
1JL£/0) v 0 + 1] - 1 (10)
)

. . 2 . .
Since w = x - y, and since o” , ag and @, are invariant under

translation of the origin, it follows that

1/6 )
n = y +B87°T[(1/8) +a+ 1]/ T(a+1) ,
2 2
Ux—cw F}
> (11)
®3.x T %34
%%:x " %a:w




The distribution function of the random variable W may be

written as

W
U r 5 s(at1)-1 —vYa
o(w;a,b,0) = o+l y € dy ,
T(ao + 1) B
0

which becomes

§
H(w;a,B,8) = I[(w /B); a + 1] / T(a + 1) , (12)
where I[(wd/B); o + 1] is the incomplete gamma function.

3., MOMENT ESTIMATION

In the general four-parameter distribution, the moment

estimates are found by simultaneously solving the following




X = Y + 81/6 r[(1/5)+ a+ 1] / (e + 1),
s2 - 820 aa,8) / TP+ 1)
‘? (13)
ag = B(@,8) / A%, ,
2
34 = C(G,G) / A (0,5) » ,)

where A(a,8), B(a,8) and C(a,8) are given in equations (9).
The last two equations of (13) may be solved simultaneously
* *
for o« and § . With the values thus found, we estimate 8 from

the second equation as

5

*
S F(a + 1) * . *
g | X =S p L8, (14)
J-——;——;— X
A(a ,8 )
where
)
D(a,s) = | Lle*1) . (15)
V(e 8)
Finally we estimate y from the first equation of (13) as
. V] * * *
Yy =x-8 rf/6)+a +1] / T(@ + 1), (16)




which may be written as

Y =;"U(a:8,6)’ (17)
where

* % K *1/5* * * *
(o ,B ,8 ) =8 {1/ )y +aoa + 1] / T(a + 1) . (18)

An alternate set of estimates may be obtained by replacing

the fourth standard moment of (13) with the smallest sample (i.e.

the first order statistic) observation. Thus we have,

~

X=y+ 8/ r[(1/8) va+1] / T+ 1),

> (19)
2= /% a8 /1P ),
ag = B(o,8) /A %(a,8)
J
From the first equation of (19) we have
* %
Yy =X . (20)




From the second and third equations we have

s2 Ala, §)

X s = . (21)

& - %) 021(1/8) + o + 1]

We solve (21) and the fourth equation of (19) simultaneously

* % * %
for « and ¢ . It then follows as with the basic moment

estimates that

g - si Do ,8 ) . (22)

4. MAXIMUM LIKELIHOOD ESTIMATION

The likelihood function of a random ‘sample of n observations
from the four-parameter distribution with density (3) may be written

as

L(xl’ 4 s . 2 xn; Q’B,‘Y’G) =

n )
1] ) T (x. _Y)G(a+1)-1 e-(xi - Y) /B . (23)
r(a + 1) g% i=1 !

The logarithm of (23) follows as



InL=nlnd§ -n(a+1) Ing -nlnT( + 1)

(24)
n n 5
8@+ -1] £ In(x, -v) - £ (x. -8
1 1 1 1

On differentiating (24) with respect to 8, &, vy, and o in turn

and equating to zero, we obtain the following estimating equations

n
:.r_l.gg__L_l.l.+_];§.z(xi_Y)6 =0,
B B 1
n 1 " 8 n
—- = I (x. ~-y) In(x., -y} + e+ 1) & 1In{x. -vy) =0,
i i i
) B 1 1
’ (25)
n n _
p s+ | 8 T o L8l =0,
1 X. - Y g 1t
i
n
-n Y(a+1) ~-nlnB+ 8§ & ln(xi - v) =0,
1
where y(a + 1) = 3ln I(a + 1) is the Digamma function.
J0.

The required maximum likelihood estimates are to be obtained

by simultaneously solving the four equations of (25). This task may
be accomplished using various iterative techniques. Before discussing

a general solution, let us examine certain possible simplifications.

10




From the first equation of (25) , it follows that

n
I (xi - \()‘S
1
B = . (26)
nfa + 1)

On substituting (26) into the second equation of (25), we have

n
(1) I 1 1n (x;-v)
1 1 1
H(a,8,y ) = - - —
a+l D (x, - e 8
b 1
1 n
-= I In(x. -vy) =0. (27)
n 1 1

On substituting (26) into the fourth equation of (25), we have

i n i
8
I (x, -v)
1 1t 1
G(a,8,Y) == 1n -=9 (e +1)
8 n(a + 1) 8
1 n
- = I In{x. -y) =0. (28)
1 1

On making a similar substitution of (26) into the third equation of

(25), we have

11



C—a

§-1

n
. \ e+ 1) 5 (x, - )
\J(a,G,Y) - 1 - 8(a+ 1) ] . 1

1 Xi—Y/

= 0. (29)

$
(xi - Y)

=~

Our task has now been reduced to that of solving (27), (28) and

A~

(29) simultaneously for the required estimates o, B8, and vy .

With this solution accomplished, B8 will then follow from (26) on

replacing o, 6, and Yy in that equation with their respective estimates.

Although the solution of these equations in the general case might

be considered rather formidable, the special case in which y is known

is much simpler. Suppose for example that y 1is known to be zero.
Should y have some value other than zero, as long as it is known we can
introduce a new variable Y = X - y and then Y has the range Y >0 .

With y known, we need only solve the pair of equations

H(a,68) = 0 and G(a,8) =0 where G and H are as defined in (28)
and {(27) using the known value for vy . We might choose a value
ay s and with oy fixed, solve H(ao,d) = 0 for 60 . Next calculate
G(ao,éo) and if the calculated value is zero, our task is finished.

Otherwise, we choose a second value oy

61. Now calculate G(al,él) . If G(aO,GO) and G(al,dl) are of

opposite signs, we may interpolate for the required estimate o , and

and solve H(ar §) = 0 for

~

in turn for § as summarized below.

12




INTERPOLATION FOR o and 6

o G(a,s) 8
>

@ G(a ,60) 20 60

o 0 )

ay G(al,Gl) 0 61

With o and § thus determined, g follows on substituting

A~

are not sufficiently close to o, then it may be necessary to make
several trials before arriving at a suitable pair which in the notation
employed here would be labeled aoand ay
In the general case with vy to be estimated, we might begin
by choosing a value (approximation) Y, and proceed as above to find
values &lyo and Slyo which are to be thought of as conditional
estimates given that y = Y, - We then calculate J[(;]yo), (3]yo),yo] .
Similarly, we select a value Y, and repeat the process until we have
evaluated J[(;Iyl), (3|yl), Yl] . We continue until our final choice

for y and Y, are such that our two evaluations of J are of
)

opposite signs. We then interpolate as summarized below.

13



INTERPQLATION FOR vy

Y J[a,d§,Y] o 8
§ - .

Yo J[(GIYO), (6|Y0),Y0] 20 aly, Glyo
0 a 8

v, Jlly), Glyd,vlso aly, 51y,

~ ~

With o, &8 and ; thus determined, é‘ follows as before on
substituting these values into (26). Linear interpolation can be
expected to yield satisfactory estimates if the absolute value

[ Y7 Y, | is sufficiently small.

However, several attempts may be necessary before obtaining a pair

of approximations that meet any reasonable definition of "sufficiently

small'" as used here.

5. THE THREE-PARAMETER WEIBULL DISTRIBUTION

The standard three-parameter Weibull distribution may be viewed
as a special case of the four-parameter distribution. Its density

function follows from (3) on setting o = 0. We thus have

8
g(x; B, v, §) =<——6—) (X—Y)G'l e'(x_Y) /B ;X >y
(30)

=0, elsewhere.
14




In this case, the moment estimating equations of (13) reduce to

T=v+ /o) + 11,

s2 = /%oy + 11 - TPLase) < 11) (1)
L _T[3/6) + 1] - 30 [(2/8) + 1] T[(1/8) + 1] + 2r°[(1/8) + 1]
37 3/2

{r[e2/8) + 11 - I‘z[(l/G) + 1]}

The third standard moment is a function of the shape parameter
8 only. Therefore the third equation of (31) can be solved for 6*,

and the remaining moment estimates follows as

£

* o * 2 * 5/*/2
B = s, /AT[(2/67) + 1] - 1°[(1/8) + 1]}
. .1t . (32)
v =X - eHY rrassh 11
Alternate estimates can be obtained by setting
* %
Y =X , (33)

i.e. setting vy equal to the first order statistic, and then dropping
the third equation of (31). On eliminating B between the two remaining

equations of (31) we have

2
Sx _ I[(2/8) + 1] - Tz[(l/d) + 1] ] (34)
® - x. )’ r2r/e) + 11

15




* % * %
Equation (34) can be solved for & , and B8 then follows from

* %
the second equation of (31), when & is substituted for .

6. ILLUSTRATIVE EXAMPLES

To

e

llustrate application of results obtained here, estimates
have been calculated for two separate samples from three-parameter
Weibull distributions. The first sample consists of 250 observations
selected with the aid of a random number generator from a population
in which B =16, &6 =2 , and vy = 10. The setond consists of
200 observations selected in the same manner from a population in

which B =8, &§ =3, and vy = 4.

Example 1:

Following is a summary of the sample data for this example:

Class Interval Frequency
10.00 - 10.75 7
10.75 - 11.50 23 X = 13.494
11.50 - 12.25 39 s? = 2.853
12.25 - 13,00 40 a, = 0.408
13,00 - 13.75 36 X in = 10.227
13.75 -  14.50 38 n = 250
14.50 - 15,25 29 , 250 P
15.25 - 16.00 16 s = I (x, - X)7/250.
16.00 - 16.75 12 1
16.75 - 17.50 7
17.50 - 18.25 2
18.25 - 19.00 1
Total 250

16




Type

The summary statistics were calculated directly from the raw
data and are thus not subject to grouping errorswhich might be
present in corresponding values calculated from the preceding
frequency table. Estimates calculated from these data along with

the true population values are given below:

SUMMARY OF ESTIMATES

Estimator B8 $ Y 61/6‘ u 02 az ayq
Moment 33.59912.408 | 9.678| 4.305 |13.494 ;2.853| 0.408 | 2.902
Maximum

Likelihood 20.169 | 2.188 | 9.998} 3.948 {13.494 |2.842 0.516 | 3.051

Two Moments and

1st Order Stat. | 14.041 {2.025 |{10.227| 3.687 {13.494 |2.853| 0.615 { 3.215

True Values 16 2 10 | 4 :113.545 [ 3.434 | 0.631 | 3.245

This example, of course, is for the special case in which

a = 0 , and the moment estimates were obtained by simultaneously
he thrce cguations of (31) using the given sample data.
The maximum likelihood estimates were calculated by simultaneously
solving the first three equations of (25) with o = 0 , while the
estimates based the first two moments and the first order statistic
were obtained by simultaneously solving the first three equations
of (19) with ¢ = 0 . For comparison, the true population values

are also included.

Example 2

The second sample was obtained in the same manner as the first

and the estimates based on this sample were likewise obtained using

17



the same procedures as for the first example. Following are summaries

of both the sample data and the estimates obtained for this example.

Class Interval  Frequency

4,25 - 4.50 5

4,50 - A.75 4 X = 5.886

4,75 - 5.00 9 52 = 0.450

5.00 - 5.25 19 ag = 0.023

5.25 - 5.50 23 X in = 4,266

5.50 - 5.75 25 . n = 200

5.7 - 6.00 27

6.00 - 6.25 28

6.25 - 6.50 23

6.50 - 6.75 18

6.75 - 7.00 9

7.00 - 7.25 S

7.25 - 7.50 3

7.50 - 7.75 2

Total 200
SUMMARY OF ESTIMATES

Eiﬁimator B 8 Y 81/6 u o2 | og ay
Moment 20.407 | 3.510 | 3.761| 2.361 {5.886 | 0.450 {0.023; 2.713
Maximum !
Likelihood 20.073 1 3.503 | 3.767 | 2.354 |5.886 ; 0.449 10.024 2.713

Two Moment and
1st Order Stat. 4 758 2.594 1 4.266| 1.824 {5.886 : 0.450 0.318 | 2.820

True Values 8 3 14 2 5.786 1 0.421 {0.168| 2.729

18




Calculations for these two illustrative examples were carried
out by Mr. Russell Helm.

Maximum likelihood estimating equations applicable here follow
from those given in equation (25) for the general four-parameter
distribution when we set o = 0. We accordingly retain the first
three equations of (25) with o = 0 to be solved simultaneously
for ;, 8, and é, Solution of these estimating equationms

in the case where vy = 0 have been rather fully discussed in

reference [2] and elsewhere.

7. SOME CONCLUDING REMARKS

Since the range over which our random variable is defined
depends on y , the estimation of this parameter presents certain
difficulties not encountered in estimating other parameters. With
y £ X, it seems natural to employ the first order statistic as an
estimate. This estimate is of course biased since Xy constitutes
an upper bound on y. Furthermore in certain distributions, the
likelihood function becomes infinitely large when we set y = X;-
As a way out of these difficulties in connection with the log-normal
distribution in which the lower limit is one of the parameters to

be estimated, the writer [1] in 1951 suggested using the following

relation

f(x) dx , (35)

=1k

19



in which

X =x, +n/2 , (36)

where x1 is the first order statistic and n is the interval of

precision with which x, has been measured. We let k designate

1
the number of times that X, oceurs in a sample of size n. In most
samples of concern to us, k =1,

Since the integration is easy to carry out in the case of the
Weibull and related distributions, it would appear that estimating
equation (35) might be quite useful in estimating vy in these
distributions as well as in the log-normal distribution. Further

investigation of the resulting estimators and their properties is

planned as a future project.
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